
RELATIVITY AND COSMOLOGY I
Solutions to Problem Set 11 Fall 2023

1. Penrose Diagrams

(a) The new coordinates T̄ and R̄ satisfy one of our criteria: they have finite ranges

−π

2 < T̄ <
π

2 , 0 < R̄ <
π

2 . (1)

The Minkowski metric in these coordinates is

ds2 = − dT̄ 2

cos4 T̄
+ dR̄2

cos4 R̄
+ tan2 R̄dΩ2 . (2)

Considering null radial geodesics, ds2 = 0, acting with this tensor on two copies of
the vector ∂R̄ , we get

dT̄

dR̄
= ±cos2 T̄

cos2 R̄
6= ±1 . (3)

Light rays do not propagate at 45 degrees. We have to look a bit harder for suitable
coordinates for our Penrose diagram.

(b) The metric in these coordinates is

ds2 = −1
2(dudv + dvdu) + 1

4(v − u)2dΩ2 , (4)

and the coordinate ranges are

−∞ < u < ∞ , −∞ < v < ∞ (5)

with the additional constraint that u ≤ v coming from their definitions in terms of
t and r .

(c) In Penrose coordinates, the metric becomes

ds2 = 1
4 cos2 U cos2 V

[
−2(dUdV + dV dU) + sin2(V − U)dΩ2

]
(6)

and the coordinate ranges are

−π

2 < U <
π

2 , −π

2 < V <
π

2 , (7)

with again the same additional constraint U ≤ V .
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(d) Now the final coordinate change. We get the metric

ds2 = 1
(cos T + cos R)2

[
−dT 2 + dR2 + sin2 RdΩ2

]
, (8)

with coordinate ranges

0 ≤ R < π , −π < T < π , (9)

where we used that the constraint U ≤ V implies R ≡ V − U is positive. Moreover,
you can check that T satisfies the following inequality

|T | < π − R . (10)

The manifold in the square brackets is clearly R × S3 , also called the Einstein
static universe. It was Einstein’s initial proposal to describe our real cosmology,
before knowing that our universe actually is expanding and is not static. You will
see more about this in your next GR course. Because our coordinates only range
over a finite interval of T , the statement we can make is that Minkowski space is
conformally related to a finite portion of the Einstein static universe (see figure
H.3 on Carroll for a visualization). Two spacetimes are said to be conformally
related if there is some coordinate system in which

ds2
1 = ω(x)2ds2

2 , (11)

where ω(x) is some function of the coordinates. The Penrose diagram we will draw
is essentially built from this fictitious spacetime in the square brackets. Light rays
in this spacetime propagate at 45 degrees

dR

dT
= ±1 . (12)

(e) The ranges of the coordinates force us to draw this spacetime as a triangle. The
full relations between (T, R) and (t, r) are

T = arctan(t + r) + arctan(t − r) , R = arctan(t + r) − arctan(t − r) . (13)

The drawing is thus something like you see on Figure 1. On the figure, we have
indicated the conventional names of some important regions on the Penrose diagram,
namely we have

• Future timelike infinity i+,
• Future lightlike infinity I+,
• Spacelike infiniy i0,
• Past lightlike infinity I−,
• Past timelike infinity i− .

It is important to mention that all future-directed timelike geodesics end up at i+

while all null geodesics end up on I+
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R

T

r = 0

spacelike
infinity (i0)
r = +∞

t = −∞
past timelike
infinity (i−)

future timelike
infinity (i+)
t = +∞

future lightlike
infinity (I+)

past lightlike
infinity (I−)

t = constant
r = constant

photon

+π

−π

+π

Figure 1: The Penrose diagram of Minkowski space. Credits to Izaak Neutelings.

2. A Hamiltonian Approach to Geodesics

(a) Let us start by computing the conjugate momenta

pµ = ∂L
∂ẋµ

= 1
ξ

gµν ẋν . (14)

We thus have
pµgµρ = 1

ξ
gµρgµν ẋν −→ ẋρ = ξpρ . (15)

The Hamiltonian is thus given by

H(x, p, ξ) = (pµẋµ − L)
∣∣∣∣
ẋµ=ξpµ

= ξ pµpµ − ξ

2pµpµ + ξ

2m2

= ξ

2
[
pµpµ + m2

]
.

(16)

(b) The Hamilton equations are

ẋµ = ∂H
∂pµ

= ξpµ (17)

ṗµ = − ∂H
∂xµ

= −ξ

2pρpν∂µgρν . (18)

To find the geodesic equations we need to use (17) in (18), keeping in mind that
derivatives with respect to λ and raising and lowering indices are not operations
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that commute. Let us look more closely at the left hand side of (18):

ṗµ = 1
ξ

d

dλ
(gµν ẋν)

= 1
ξ

(ẋρ∂ρgµν ẋν + gµν ẍν) .

(19)

The full equation is thus

ẋρ∂ρgµν ẋν + gµν ẍν = 1
2 ẋρẋν∂µgρν , (20)

where, to go from the right hand side of (18) to the right hand side of (20), we have
used that1

ẋρẋν∂µgρν = −ẋρẋν∂µgρν . (21)
Multiplying by gµλ and reshuffling terms, we get

ẍλ + 1
2gµλ (∂ρgµν + ∂νgµρ − ∂µgρν) ẋρẋν = 0 , (22)

where we recognize exactly the geodesic equations.

(c) The Hamilton equations of motion for ξ are

ξ̇ = ∂H
∂pξ

= 0 , ṗξ = −∂H
∂ξ

= −1
2

[
pµpµ + m2

]
. (23)

Since we computed that pξ = 0, necessarily we have that Hon-shell = 0 . The con-
straint is thus pµpµ = −m2, which in terms of four velocities reads

−gµνUµUν = ξ2m2 (24)

(d) From (18) we see that pµ is a constant of motion if ∂µgρν = 0 .

(e) Let us expand the derivative of f(x, p):
d

dλ
f(x, p) = dxµ

dλ

∂f

∂xµ
+ dpµ

dλ

∂f

∂pµ
. (25)

Using the Hamilton equations of motion,
d

dλ
f(x, p) = ∂H

∂pµ

∂f

∂xµ
− ∂H

∂xµ

∂f

∂pµ

= {f, H} ,

(26)

as we wanted to show.

(f) From what we just showed, if we choose f(x, p) = pµKµ(x) , we get

ḟ = {f, H} = ∂f

∂xµ

∂H
∂pν

− ∂f

∂pµ

∂H
∂xµ

= (pα∂µKα)gµβpβ − Kµ
(1

2∂µgαβpαpβ

)
=

= pαpβ

(
gµβ∂µ(gαγKγ) − 1

2gµγKγ∂µgαβ
)

=

= pαpβ

(
gµβgαγ∂µKγ + gµβKγ∂µgγα − 1

2gµγ∂µgαβKγ

)
=

= pαpβ(∂αKβ + gσα∂βgγσKγ − 1
2gαα′gββ′gµγ∂µgα′β′

Kγ)

(27)

1Check that this is true by starting from ∂µδα
β = 0.
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Using identity ∂ξg
αβ = −gαα′

gββ′
∂ξgα′β′ one arrives at

ḟ = pαpβ
(

∂αKβ − gµγ∂βgµαKγ + 1
2gµγ∂µgαβKγ

)
(28)

By using the fact that the α and β indices in the brackets are contracted with the
symmetric quantity pαpβ, we can equivalently write

ḟ =pαpβ
(

∂(αKβ) − gµγ∂(βgα)µKγ + 1
2gµγ∂µgαβKγ

)
=

=pαpβ
(
∂(αKβ) − Γγ

(αβ)Kγ

)
= pαpβ∇(αKβ)

(29)

For general p it vanishes iff ∇(αKβ) = 0, which is Killing equation.

3. The vielbein formalism

(a) At each point x the metric of a d dimensional Lorentzian spacetime is a symmetric
tensor that can be diagonalized as

P µ
a (x)gµν(x)P ν

b (x) = diag(-λ0, λ1, . . . , λd-1)ab, (30)

where the change of basis matrices P µ
a (x) are functions of x since the metric is in

general a different matrix at each point. We can now define

eµ
a(x) =

√
λaP µ

a , (no sum) (31)

such that
eµ

agµνeν
b = ηab (32)

(b) Using the Lorentz matrices
Λa

cΛb
dηab = ηcd, (33)

we get
(Λa

ce
µ
a)gµν(Λb

deν
b ) = ηcd, (34)

which coincides with (32) if we identify

e′µ
a = Λd

aeµ
d . (35)

Therefore the frame fields are only defined up to Lorentz transformations.

(c) A direct computation yields

ds2 = gµνdxµdxν = ea
µeb

νηabdxµdxν = eaebηab. (36)

(d) We have, first by relating the frame components V a to the vector components V ν

∇µV a ≡ ∂µV a + ω a
µ bV

b

= ∂µ(ea
νV ν) + ω a

µ bV
b

= ea
ν∂µV ν + (∂µea

ν)V ν + ω a
µ bV

b

(37)
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On the other hand, we can think of ∇µV a as the components of a 2-tensor, with one
frame component and one spacetime component. We can convert to full spacetime
components via

∇µV a = ea
ν∇µV ν = ea

ν

(
∂µV ν + Γν

µρV ρ
)

. (38)
Comparing the two expressions for ∇µV a we get

ea
νΓν

µρ = ∂µea
ρ + ω a

µ be
b
ρ. (39)

Multiplying by the inverse frame eσ
a this gives

Γσ
µρ = eσ

a∂µea
ρ + eσ

aω a
µ be

b
ρ, (40)

and multiplying instead by eρ
c gives

eρ
cea

νΓν
µρ − eρ

c∂µea
ρ = ω a

µ c. (41)

(e) First we have

∇µηab = −ω c
µ aηcb − ω c

µ bηac = −ωµba − ωµab = 0, (42)

which implies ωµ[ab] = 0. Then we have

dea = ∂νea
µdxν ∧ dxµ, (43)

such that

dea + ωa
b ∧ eb = ∂µea

νdxµ ∧ dxν + ω a
µ be

b
νdxµ ∧ dxν

=
(
∂µea

ν + ω a
µ be

b
ν

)
dxµ ∧ dxν

(44)

The term inside the parentheses is exactly (39), hence

dea + ωa
b ∧ eb = ea

λΓλ
νµdxµ ∧ dxν = 0 (45)

where for the last equality we assumed the symmetric Levi-Civita connection. More
generally there could be a torsion term. For the Riemann tensor we start from the
defining equation

[∇µ, ∇ν ]V ρ = Rρ
λµνV λ = eρ

a(Ra
b)µνV b (46)

We compute

∇µ∇νV a = ∂µ∇νV a − Γλ
µν∇λV a + ω a

µ b∇νV b (47)

and then we multiply by dxµ ∧ dxν which will antisymmetrize over µ and ν. In
particular the second term will vanish. We are left with

∇µ∇νV a = ∂µω a
ν bV

b + ω a
ν b∂µV b + ω a

µ bω
b

ν cV
c + ω a

µ b∂νV b + ... (48)

where ... contains terms symmetric in µ, ν. Note that the second term and the last
term form a combination that is also symmetric in µν. Hence we have

∇µ∇νV a =
(
∂µω a

ν b + ω a
µ cω

c
ν b

)
V b + ... (49)

from which we can read off

Ra
b = dωa

b + ωa
c ∧ ωc

b. (50)
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(f) From the metric
ds2 = −dt2 + a2(t)dxidxi = eaebηab (51)

we can directly read off the 1-form frame fields

e0 = dt, ei = a(t)dxi. (52)

The t and i components of the first structure equation read

0 = de0 + ω0
a ∧ ea = a(t)ω0

j ∧ dxj,

0 = dei + ωi
a ∧ ea = ȧ(t)dt ∧ dxi + ωi

0 ∧ dt + a(t)ωi
j ∧ dxj.

(53)

Not that from the antisymmetry of ωab we get ω0
i = ωi

0. The first equation implies
ω0

j = f(t)dxj for some f(t). Plugging in the second equation we get

−ȧdxi ∧ dt + f(t)dxi ∧ dt + aωi
jdxj = 0, (54)

which is solved by

f(t) = ȧ, ω0
j = ȧdxj, ωi

j = 0. (55)

We now write the components of the second structure equation

R0
i = dω0

i + ω0
cω

c
i = ädt ∧ dxi,

Ri
j = dωi

j + ωi
cω

c
j = ȧ2dxi ∧ dxj.

(56)

We can read the Riemann tensor from

Rλ
ρµν = eλ

aeb
ρ (Ra

b)µν , (57)

which gives the non zero components

R0
i0j = aäδij, Ri

jkl = ȧ2
(
δi

kδjl − δi
lδjk

)
. (58)

The Ricci is obtained by taking traces

R00 = −3 ä

a
, Rij = (aä + 2ȧ2)δij. (59)

and the Einstein equations are Rµν − 1
2Rgµν = 8πGTµν , where we find

R = 6 ä

a
+ 6 ȧ2

a2 . (60)

For a perfect fluid Tµν = diag(ρ, p, p, p), and we get

ȧ2

a
= 8

3πGρ,
ä

a
= −4

3πG(ρ + 3p). (61)

Those are known as the Friedmann equations and are of extreme importance for
cosmology.
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