RELATIVITY AND COSMOLOGY 1

Solutions to Problem Set 11 Fall 2023

1. Penrose Diagrams

(a) The new coordinates 7" and R satisfy one of our criteria: they have finite ranges

T - T _ T
—— < T < = 0<R<—. 1
5 < 5 <R<g (1)
The Minkowski metric in these coordinates is
dT? dR? _
ds® = — = + _ + tan® RAQ?. (2)
cos*T  cos?

Considering null radial geodesics, ds* = 0, acting with this tensor on two copies of

the vector 0j , we get
dT 2T
— 8P 4 (3)

dR " cos?R
Light rays do not propagate at 45 degrees. We have to look a bit harder for suitable

coordinates for our Penrose diagram.

(b) The metric in these coordinates is

1 1
ds® = —§(dudv + dvdu) + Z(U —u)*dQ?, (4)

and the coordinate ranges are
—00 < u < 00, —00 <V < 00 (5)

with the additional constraint that u < v coming from their definitions in terms of
tand r.
(¢) In Penrose coordinates, the metric becomes

1
2 _ B o ;
ds = gy [2AUAV + AVAU) + sin’(V — U)de2’]

(6)

and the coordinate ranges are

70 70 7 7

——<U< < ——< V<< 7
2 2’ 2 27 (")

with again the same additional constraint U < V.



(d) Now the final coordinate change. We get the metric

1

ds? =
° (cos T + cos R)?

|—dT? + dR? + sin® RAQ?| | (8)

with coordinate ranges
0O<R<m, —r<T<m, (9)

where we used that the constraint U < V implies R = V — U is positive. Moreover,
you can check that T satisfies the following inequality

IT|<7—R. (10)

The manifold in the square brackets is clearly R x S?, also called the Einstein
static universe. It was Einstein’s initial proposal to describe our real cosmology,
before knowing that our universe actually is expanding and is not static. You will
see more about this in your next GR course. Because our coordinates only range
over a finite interval of T', the statement we can make is that Minkowski space is
conformally related to a finite portion of the Einstein static universe (see figure
H.3 on Carroll for a visualization). Two spacetimes are said to be conformally
related if there is some coordinate system in which

ds? = w(x)?ds3, (11)

where w(x) is some function of the coordinates. The Penrose diagram we will draw
is essentially built from this fictitious spacetime in the square brackets. Light rays
in this spacetime propagate at 45 degrees

dR

— =41, 12
o7 (12)

The ranges of the coordinates force us to draw this spacetime as a triangle. The
full relations between (7, R) and (t,r) are

T = arctan(t + r) + arctan(t — ), R = arctan(t +r) — arctan(t —r). (13)

The drawing is thus something like you see on Figure 1. On the figure, we have
indicated the conventional names of some important regions on the Penrose diagram,
namely we have

o Future timelike infinity ¢+,

 Future lightlike infinity Z+,

o Spacelike infiniy °,

« Past lightlike infinity Z—,

o Past timelike infinity i~ .

It is important to mention that all future-directed timelike geodesics end up at i
while all null geodesics end up on Z+



T, future timelike
infinity (i 1)

+7Kt=+x

future lightlike
infinity (Z1)

spacelike

T = +00

t = constant
r = constant

Tt t=—00

past timelike
infinity (i7)

1 nfinity (i)

Figure 1: The Penrose diagram of Minkowski space. Credits to Izaak Neutelings.

2. A Hamiltonian Approach to Geodesics

(a) Let us start by computing the conjugate momenta

We thus have

oc 1

Pu = @ = gg;wx .

1
pugﬂp = 7gupg,uujjy — = gpp.

§

The Hamiltonian is thus given by

H(z,p, &) = (put" = L)

(b) The Hamilton equations are

TH=EpH
§ §
=& pupt — §p"pu +gm
§
=3 pup” +m?]
oH
it = = = ¢pt
Op, £
OH & y
w = _@ = _§pppuaugp .

2

(14)

(15)

(16)

(17)

(18)

To find the geodesic equations we need to use (17) in (18), keeping in mind that
derivatives with respect to A and raising and lowering indices are not operations
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that commute. Let us look more closely at the left hand side of (18):

C1d,
pu_ga(g;wx )

1 ) (19)
— E (2°0,9,w %" + g @”) .
The full equation is thus
. . L,
2°0,9, 1" + gud” = 5:5% 0upw » (20)

where, to go from the right hand side of (18) to the right hand side of (20), we have
used that!

T,2,0,9" = =227 0,9, - (21)
Multiplying by ¢"* and reshuffling terms, we get
. 1 o
# igw\ (DG + OuGup — Ougpw) 271" =0, (22)

where we recognize exactly the geodesic equations.

(¢) The Hamilton equations of motion for £ are

OH OH 1
oo =0 Pe= g =g [P+ (23)
Since we computed that ps = 0, necessarily we have that Hnsnen = 0. The con-
straint is thus p,p" = —m?, which in terms of four velocities reads
_gijﬂUV = 527712 (24>

(d) From (18) we see that p, is a constant of motion if d,¢”” = 0.

(e) Let us expand the derivative of f(x,p):

d dzt Of  dp* Of
= == L 2 2
o) = T N o (25)
Using the Hamilton equations of motion,
if(x )_87{ of  OH of
ax’ P = dp, Ox+  Ox,, Opt (26)
= {f7 ,H} )
as we wanted to show.
(f) From what we just showed, if we choose f(z,p) = p,K*(x), we get
- _Of OH  Of OH oy B ﬂ<1 B )_
f - {f?H} - axu apl/ ap'u axu - (paaﬂK )g 2] K Za,ug DPaPp | =
1
= PaPp (9“6%(9“%) _ g“VKyauga[j) =
2 (27)

« « 1 (87
= DaPp <guﬁg 70,K, —|—g“'BK78Mg'Y _ ig;wa#g ﬁKw) —

o o 1 a/ !
= p"p’ (0u K5 + Goalsg " K., — 5 9ac 939" 0ug "K,)

!Check that this is true by starting from 0,05 = 0.
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Using identity 9zg®? = —go gﬂﬁlaggazﬁf one arrives at

. 1
f = papﬂ (804}(6 - glwaﬂg;chW + 2glwaugocﬁK'y> (28>

By using the fact that the o and 8 indices in the brackets are contracted with the
symmetric quantity p®p”, we can equivalently write

. N 1
f =p p6 <a(aKﬁ) - g'wya(ﬂgoz)uKV + Q.QluyaligaBKW) =

(29)
=1’ (0Kp) — Tap) K- ) = 00"V ia k)

For general p it vanishes iff V(,Kjz) = 0, which is Killing equation.

3. The vielbein formalism

(a)

()

(d)

At each point x the metric of a d dimensional Lorentzian spacetime is a symmetric
tensor that can be diagonalized as

P (x)gu(x) Py (x) = diag(-Ao, A1, - - -, Ad-1) abs (30)

where the change of basis matrices P*(z) are functions of x since the metric is in
general a different matrix at each point. We can now define

et(x) = \/)CP(;‘, (no sum) (31)

such that
€4 €y = Nab (32)
Using the Lorentz matrices
AN 4ab = Neds (33)
we get
(A%el) 9w (A’ aeh) = Nea, (34)

which coincides with (32) if we identify

et = A el (35)
Therefore the frame fields are only defined up to Lorentz transformations.
A direct computation yields

ds* = guda’dz” = ej e nadatdz” = e (36)

We have, first by relating the frame components V' to the vector components V*

VVe=0,V +whH V'
= 0,(esV") + w4 V° (37)
=29, V" + (0.et)V” +w, V"

bt



On the other hand, we can think of V' as the components of a 2-tensor, with one
frame component and one spacetime component. We can convert to full spacetime
components via

Vu V=iV, V= e (9,17 T, V7). (38)
Comparing the two expressions for V,V* we get
e Iy, = duey + wu“bef). (39)

Multiplying by the inverse frame e? this gives

o _ o a o, .a b
[V, = eqoue; + eqw, e, (40)

and multiplying instead by e’ gives

ere I, —etoue, = w,’ .. (41)
First we have
Vunab = _wp,cancb - wp,cbnac = —Wyba — Wyab = 07 (42)

which implies wyq) = 0. Then we have
de® = d,epdx” N\ da”, (43)
such that

de® + w A €® = 0,eldat A da” + wuabel;dx“ A dx”

44
= <8Me,‘ﬁ + wuabew dxt A dx” (44)

The term inside the parentheses is exactly (39), hence
de® +w A e’ = eIy dat A da” =0 (45)

where for the last equality we assumed the symmetric Levi-Civita connection. More
generally there could be a torsion term. For the Riemann tensor we start from the
defining equation

V.,V VP =R, V*=el(RY),, V" (46)

Ay

We compute
V.V, Ve =9,V V=T ViV +w, Y,V (47)

and then we multiply by dx* A dx” which will antisymmetrize over p and v. In
particular the second term will vanish. We are left with

ViV Ve =0,w,5V0 + w0,V + ww, Ve + w50,V + . (48)

where ... contains terms symmetric in u, v. Note that the second term and the last
term form a combination that is also symmetric in pv. Hence we have

ViV V= (9,0,% + w,"w,%) VP + . (49)
from which we can read off

Rab — dwab + wac /\ wcb. (50)
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(f) From the metric o
ds® = —dt* + a*(t)da'dz’ = "€’y (51)

we can directly read off the 1-form frame fields
e’ = dt, e' = a(t)dz’". (52)
The t and 7 components of the first structure equation read

0 =de’ +w, Ae* = at)w’; Ada?,

, : , : . , 53
0=de' +w, Ne® = a(t)dt Ndx' +w'y Adt + a(t)w; A da’. (53)

Not that from the antisymmetry of wq, we get w’ = w’,. The first equation implies
woj = f(t)dz? for some f(t). Plugging in the second equation we get

—ada’ A dt + f(t)da' A dt 4 aw' da? = 0, (54)
which is solved by
f(t)=a, w’; = ada’, w'; =0, (55)

We now write the components of the second structure equation

Roi = dwoi + wocwci = adt A da’,

. : , . , (56)
R'; =dw'; + ' W = a"dz" A\ da’.
We can read the Riemann tensor from
R)\p,u,u = 6262 ( ab)p,y ) (57)
which gives the non zero components
R = aidyy, Ry =a® (040, — 6{05) - (58)
The Ricci is obtained by taking traces
ROO = —39, Rij = (CLCL + 2(1,2)5” (59)
a
and the Einstein equations are R, — %Rgm, = 87GT},,, where we find
R=6t 46l (60)
a a?
For a perfect fluid T}, = diag(p, p, p,p), and we get
a? 8 a 4
— =-1G —=——nG 3p). 61
- =37mGp. —=—onG(p+3p) (61)

Those are known as the Friedmann equations and are of extreme importance for
cosmology.



